

ABSTRACT
High-throughput JPEG2000 (HTJ2K), also known as JPEG 2000
Part 15, is the most recent addition to the JPEG2000 suite of coding
tools. Ee file extension JPH has been designated for compressed
images employing this new part of the standard. Eis new part
describes a “fast” block coder for the JPEG 2000 format, while
retaining most other JPEG2000 features and capabilities intact. Ee
HTJ2K block coder is amenable to parallelizable high-speed
encoding and decoding implementations; moreover, it is designed
to allow lossless transcoding of already compressed JPEG2000
images that employ the regular block coder. HTJ2K supports the
scalability options available in the JPEG2000 format except for
quality scalability, which is available only to a limited extent. Eis
work gives a high-level overview of this new block coder; we also
present preliminary performance results for a GPU implementation.
We show that a low-end GPU can decode 4K 4:4:4 12-bit videos at
more than 60 frames per second (fps) while a high-end GPU can
decode 8K HDR videos at more than 120 fps.

 Index Terms— Image compression, graphical processing unit

1. INTRODUCTION
Ee JPEG2000 suite of image coding standards has been successful
in a wide variety of applications and markets due to its versatility
and performance. Ee main stages of the JPEG2000 compression
pipeline are color transform, wavelet transform, and entropy
coding, which is the task of the block coder. Ee color transform
stage transforms the color components of an image to a new color
space that is more suitable for compression from the human visual
system point of view. Ee wavelet transform decomposes a color
component into a set of subbands, exploiting spatial correlation.
Eese subbands are then divided into rectangular regions known as
codeblocks. Ee block coder then encodes the samples of each
codeblock independently of other codeblocks. Ee compressed
byte-streams produced by the block coder then undergo a post-
compression rate-distortion (PCRD) optimization stage whereby
coded data are assigned to quality layers within the generated
codestream.
 Ee JPEG2000 block coder employs a fractional bitplane coder;
that is, the block coder employs three passes to encode each
bitplane of the codeblock samples, where each pass encodes only
some of the samples in that bitplane. Eese passes are known as:
the significance propagation pass (SPP), the magnitude refinement
pass (MRP), and the cleanup pass (CUP) [1].
 Ee most computationally demanding stage of the JPEG2000
image compression pipeline is the block coder; the color and
wavelet transforms in JPEG2000 involve a small number of
arithmetic operations and are easily parallelized.

 Ee block coding complexity can be partly attributed to the need
of the block coder to visit codeblock samples multiple times as it
generates the passes of the compressed codestream. But perhaps the
more important source of complexity is the serial nature of the
context-adaptive arithmetic coder used for entropy coding, which
makes parallel processing very hard if not impossible.
 To improve coding speed, the block coder can employ the
“BYPASS” mode, which utilizes a simple bit stuffing for the SPP
and MRP; i.e., no entropy coding is employed. In practice however,
the improvement is modest, and it comes with a small reduction in
coding efficiency.
 A more important speedup approach has been to use multiple
processing units (or cores) to code codeblocks; this is possible
because each codeblock is coded independently of other
codeblocks. However, for many applications, it is still desirable to
have a block coder that has a lower complexity, which is what the
high-throughput JPEG2000 (HTJ2K) is addressing.
 On a CPU with AVX2, the speedup obtained from the HTJ2K
block coder, compared to a regular JPEG2000 block coder, is
anywhere between 10x faster decoding at low bitrates and 42x
lossless encoding, with an average increase of 9% or less in
compressed codestream bitrate [2], compared to regular JPEG2000.
Moreover, on a 4-core Skylake-generation CPU, HTJ2K can
encode and decode 4K 4:4:4 12-bit videos at 60fps or more [2]. Eis
work explores the speed of HTJ2K decoding on a GPU.
 HTJ2K supports most of the JPEG2000 features, except for
limited quality scalability; however, resolution scalability is still
available and can be used as a proxy for quality scalability.
Moreover, HTJ2K allows lossless transcoding to and from regular
JPEG2000; one usage scenario is to use HTJ2K on a compute-
limited device to code images while they are being captured, and

DECODING HIGH-THROUGHPUT JPEG2000 (HTJ2K) ON A GPU

Aous &abit Naman and David Taubman

School of Electrical Engineering and Telecommunications,
Ee University of New South Wales (UNSW), Sydney, Australia

Fig. 1. Coding passes in regular JPEG2000 and HTJ2K codeblocks.

CUP
SPP
MRP

CUP
SPP
MRP

CUP

SPP
MRP

SPP
MRP

CUP

SPP
MRP

MSB

MSB - 1

MSB - 2

LSB

Regular JPEG2000 Codeblocks HTJ2K CodeblocksBitplanes

op
tio
na
l

then losslessly transcode them to regular JPEG2000 for archival
purposes or for dissemination using JPIP [3]. Another scenario is
when an interactive playback machine decodes a regular JPEG2000
codestream for display, simultaneously encoding it back into
HTJ2K to save memory/computation should the end-user need to
look at that frame again at some future point in time.
 For fast image coding, an ISO working group, known as the
JTC1/SC29/WG1, has also developed a lightweight image
compression standard, known as the JPEG-XS [4], to serve as a
mezzanine-level image coder for video transmission over managed
media networks. Ee main target applications of JPEG-XS is
hardware infrastructure in a studio. HTJ2K images have higher
PSNR than JPEG-XS at the same data rate. In Section 4, we show
that the proposed HTJ2K GPU implementation is also faster than a
recently reported JPEG-XS GPU implementation [5].
 Ee earliest implementation of regular JPEG2000 on a GPU is
perhaps by [6]. Nowadays, commercial GPU implementations are
available from [7] and [8]. To get more speed from a GPU, some
researchers chose to modify the block coder [9], [10], and the
entropy coding itself [9], breaking compatibility with JPEG2000.
By contrast, HTJ2K deliberately adopts a coding pass strategy that
represents exactly the same information as the original JPEG 2000
block coder.

2. THE HTJ2K CODEBLOCK CODESTREAM
Ee codestream of an HTJ2K codeblock usually has 1, 2, or 3
passes, starting with a CUP, followed by an optional SPP, and a yet
optional MRP. Ee CUP of an HTJ2K stream usually contains many
complete bitplanes, whereas the regular CUP contains only the
cleanup pass of a bitplane. Eis is depicted in Fig. 1. HTJ2K adopts
the BYPASS mode of regular JPEG2000 for coding the SPP and
MRP; their availability facilitates transcoding. Moreover, when an
HTJ2K codestream is directly generated (i.e., not transcoded), the
existence of SPP and MRP helps with the PCRD optimization stage
by providing the HTJ2K encoder with more possible truncation
points (i.e., providing finer granularity).
 For a given codeblock, the number of passes and their sizes are
signaled in the header of the precinct containing the codeblock.
Fig. 2 shows the byte-stream segments of a HTJ2K codeblock; the
CUP is comprised of a magnitude-sign (MagSgn) segment that
grows forward, a MEL segment that also grows forward, and a VLC
segment that grows backward. Ee last two bytes in the CUP
segment signal the position of the MEL segment. Ee SPP segment
grows forward while the MRP, if it exists, grows backward. Eis
forward-backward arrangement exposes more parallelism; for
example, a decoder can choose, as done here, to decode the MEL
and VLC segments of the CUP, together with the SPP, and to later
on decode the MagSgn of the CUP together with the MRP.
 HTJ2K processes codeblock samples in 2x2 blocks, known as
“quads,” in a raster order, as shown in Fig. 3. For a codeblock with
width 𝑊 and height 𝐻 , we have 𝑊# ×𝐻# quads, where 𝑊# =
	⌈𝑊/2⌉ and 𝐻# =	 ⌈𝐻/2⌉ . We write 𝒬, for a quad, where 𝑞 =
0,1,… ,𝑊# × 𝐻# − 1 . We also write 𝜇4 ∈ {0,1,… } for the

magnitude of the quantized codeblock sample 𝑥4 at location 𝑛, and
𝑠4 ∈ {0,1} for its sign, where 0 and 1 represent positive and
negative values, respectively. Here, the subscript 𝑛 is equal to
4𝑞 + 𝑗, where 𝑗 is shown in in Fig. 3.
 Coding efficiency comes from efficiently coding the location of
significant samples (i.e., those that are non-zero after quantization)
and the number of bits needed to represent them; bit patterns of
sample values among adjacent samples have very little redundancy.
Eis is true for HTJ2K, and for a wide range of image coding
standards, including JPEG. For HTJ2K, this information is
communicated using the MEL and the VLC byte-streams. For this
purpose, we associate an exponent bound 𝑈, with each quad 𝒬,
such that 𝑈, ≥ 𝐸4, where 𝑛 ∈ {4𝑞 + 𝑗	|𝑗 = 0,1,2,3} and 𝐸4 is the
exponent of sample 𝑥4. Ee value 𝐸4 − 1 is the minimum number
of bits needed to represent the value 𝜇4 − 1; the exponent 𝐸4 value
is equal to ⌈logF𝜇4⌉ + 1, when 𝜇4 ≥ 1, and 0 when 𝜇4 = 0. We
also write 𝜎4 for the significance state of the sample 𝑥4	at location
𝑛 , where 𝜎4 = 1 for a significant sample (𝜇4 ≥ 1), and 0
otherwise. Ee significance states of a quad 𝒬, are concatenated in
one significance pattern 𝜌,, given by

𝜌, = 𝜎I, + 2 ∙ 𝜎I,KL + 4 ∙ 𝜎I,KF + 8 ∙ 𝜎I,KN

Next, we explore the HTJ2K byte-streams.

2.1. ?e MEL Byte-Stream

Ee MEL coder is an adaptive run-length coder that can efficiently
code runs of 0; this helps with coding stretches of all-zero quads. It
is used in JPEG-LS [11] with 32 states, where it is called
MELCODE. To keep complexity low, the HTJ2K uses a MEL
coder with 13 states; each state 𝑘 of the MEL coder is associated
with an exponent 𝑒Q , and a threshold 𝜏Q = 2ST . A “0” codeword
signals a run of 𝜏Q 0s, while a “1” codeword indicates a run of 0s
terminating with 1; a “1” codeword is followed by 𝑒Q bits of data
specifying the number of zeros before the terminating one. Each
run, complete or terminated, adapts the state of the MEL coder. Ee
use of the MEL byte-stream is described in Section 2.3.

2.2. ?e VLC Byte-Stream
For a given quad 𝒬, , the VLC byte-stream carries a context-
adaptive Huffman codeword, and when necessary, an offset 𝑢, that
is used to evaluate 𝑈, . For each pair of quads, these parts are
interleaved; that is, the byte-stream has a Huffman codeword for
the first quad, then the second, followed by the offset 𝑢, for the first

Fig. 2. HTJ2K encoder processes samples in quads. Ee white
blocks are outside the image, therefore are assumed to be zero for
this codeblock. Ee bottom-right corner of each sample shows the
subindex 𝑗.

quad 0 quad 1 quad 𝑊$ − 1

quad 𝑊$ quad 𝑊$ + 1

0 2

1 3

0 2

1 3

0 2

1 3

0 2

1 3

0 2

1 3

Fig. 3. Ee segments of a HTJ2K codeblock. Ee last two bytes of
the cleanup pass contain a pointer to the start of the MEL segment.

MEL
byte-stream VLC

byte-stream
SPP

byte-stream MRP
byte-stream

MagSgn
byte-stream

Cleanup

Refinement

quad, then the second. Decoding a Huffman codeword reveals 13
bits of data; these are: the 4-bit significance pattern 𝜌,, an offset
indicator bit 𝑢,VWW , and two 4-bit “EMB” patterns 𝜖,Y and 𝜖,L . Ee
meaning and use of EMB patterns 𝜖,Y and 𝜖,L will be explained in
Section 2.4.
 For a quad 𝒬,, the Huffman codeword context 𝑐, is 3 bits, and
is composed from the significance of the samples near that quad;
these nearby samples are shown in Fig. 4., for the initial line of
quads (i.e., the first row of the codeblock) and non-initial quads.
Eese 3 bits can be calculated once the significance patterns 𝜌, of
preceding quads are decoded. Ee HTJ2K uses a Huffman code
with up to 7-bit codewords; to decode the HTJ2K Huffman
codewords, it is convenient to use a lookup table with 1024 entries
(3-bit contexts and up to 7-bit codewords).

2.3. Decoding 𝑼𝒒 and 𝑬𝒏
For a quad with a context 𝑐, equal to zero, a single decoded bit is
retrieved from the MEL decoder. If this bit is zero, the exponent
bound 𝑈, is zero for that quad, and all the samples are zero in that
quad. Conversely, if that bit is 1, or if the quad’s context 𝑐, is not
zero, the exponent bound 𝑈, is not zero, and must be calculated
using a predict and increase strategy. To this end, a predictor 𝜅, is
generated as explained shortly. Een, an offset indicator 𝑢,VWW value
of zero indicates that the predictor 𝜅, is large enough, and 𝑈, is
equal to 𝜅, . If the offset indicator 𝑢,VWW is 1, the predictor 𝜅, is
insufficient and 𝑈, is equal to 𝜅, + 𝑢, , where the offset 𝑢, is
obtained from the VLC byte-stream, as explained earlier. For non-
initial lines, the predictor 𝜅, is obtained using

𝜅, = maxc1, 𝛾, ∙ emaxc𝐸,fg, 𝐸,f, 𝐸,fh, 𝐸,fWi − 1ji

where 𝐸,fg, 𝐸,f, 𝐸,fh, and 𝐸,fW are shown in Fig. 5., and

𝛾, = k0 if	𝜌, ∈ {0,1,2,4,8}
1 otherwise

	

 Eus, the predictor 𝜅, depends on the exponents of the
neighboring samples in the previous line if more than one of these
samples is significant; otherwise the predictor is one. Initial lines
do not have a previous line, and therefore 𝜅, is set to 1; however,
to improve coding efficiency, a modified policy is used to calculate
𝑈,. For more details, the interested reader is referred to [12]. While
the design of HTJ2K could have used the samples to the left of a
quad 𝒬, to help determine the predictor 𝜅,, the decoding of quad
𝒬, would have depended on samples that are being decoded,
delaying the decoding process.

2.4. ?e MagSgn Byte-Stream
Ee EMB patterns 𝜖,Y and 𝜖,L provide information about whether a
sample exponent 𝐸4 is equal to the exponent bound 𝑈,, but they
might not carry this information for all the samples in the quad 𝒬,.

Ee “known bit” pattern 𝜖,Y identifies for which samples this
information is available, and the “known 1” pattern 𝜖,L provides this
information. For a significant sample in quad 𝑞 , 𝑈, bits are
sufficient to communicate the sign and magnitude of that sample.
However, if 𝜖,Y = 1 , then the most significant bit of the 𝑈,
magnitude bits is conveyed by the VLC codeword as the 𝜖,L value.
Eus, the EMB patterns can save up to 4 bits from the MagSgn byte-
stream by spending fewer bits in a VLC codeword. Ee EMB
patterns are given by

𝜖,Y = 𝑘I, + 2 ∙ 𝑘I,KL + 4 ∙ 𝑘I,KF + 8 ∙ 𝑘I,KN,where	𝑘4 ∈ {0,1}	
𝜖,L = 𝑖I, + 2 ∙ 𝑖I,KL + 4 ∙ 𝑖I,KF + 8 ∙ 𝑖I,KN,where	𝑖4 ∈ {0,1}	

 For a sample 𝑥4 in quad 𝒬,, a value 𝑦4 comprising 𝑚4 bits are
read from the MagSgn byte-stream, where 𝑚4 = 𝜎4 ∙ 𝑈, − 𝑘4 .
Een, 𝑖4 ∙ 2wx is added to 𝑦4, from which the sample is obtained.
 HTJ2K is fast because it visits a sample a small number of times.
Also, decoding a single codeword of the VLC byte-stream provides
information for 4 samples; moreover, the interleaved decoding of
pairs of quads exposes instruction level parallelism that a
superscalar processor can exploit. Additionally, decoding the
MagSgn byte-stream can proceed from one row of quads to the
next, without any dependencies on horizontally adjacent samples.
 Decoding the SPP and MRP byte-streams is not explained here,
because they are closely related to the original standard [1], [13].

3. A GPU-BASED DECODER FOR HTJ2K
Only 64x64 codeblocks are explored here; a 3-color 4K image
usually has around 6300 such codeblocks. Ee host CPU decodes
precinct headers and prepares lists for byte-stream locations inside
the HTJ2K codestream; the host CPU then uploads the file and the
lists to the GPU. Eis takes a small amount of time, and can be run
in parallel with GPU decoding a previous frame.
 It is best to think of decoding the HTJ2K CUP as a two-step
process. Ee first step, handled by the KCUPS1 kernel, decodes the
MEL and VLC byte-streams. Here, a single thread is used to
decode each codeblock. Ee Huffman table needed by the VLC
decoder is transferred from global memory to shared memory by
the first warp of each CUDA block. For a given quad 𝒬,, decoding
these byte-streams produces the significance pattern 𝜌,, the EMB
patterns 𝜖,Y and 𝜖,L , and the offset 𝑢, . Eese values are stored
together in a 32-bit integer in global memory, for retrieval by the
second decoding kernel. For 4K images with 64x64 codeblocks,
this kernel underutilizes the GTX1080 card; better utilization can
be achieved with 32x32 blocks. Ee KCUPS1 uses 45 registers.
 Ee second step, handled by the KCUPS2 kernel, uses the data
stored by the KCUPS1 kernel to decode the MagSgn byte-stream,
and reconstruct 32-bit sign-magnitude values for each sample 𝑥4.
Each thread in a warp decodes two columns of a codeblock; thus,
one warp is needed to decode a 64x64 codeblock. Ee KCUPS2
uses 64 registers.

quad q quad q

Context neighbourhod when non-initial lines Context neighbourhod for initial lines

𝜌" 𝜌"

𝜎"ne𝜎"n 𝜎"nf𝜎"nw

𝜎"w

𝜎"sw

𝜎"w

𝜎"sw

𝜎"f

𝜎"sf

Fig. 4. Ee context neighborhood of a quad for initial line (first row)
of quads in a codeblock, and non-initial.

lines 2m, 2m+1

lines 2m-2, 2m-1

quad q

𝐸"n 𝐸"ne 𝐸"nf𝐸"nw

Fig. 5. Neighborhood information used to estimate the predictor 𝜅,
for a non-initial quad 𝒬,.

 A practical decoder, can always choose to discard the SPP and
MRP to reduce complexity, in exchange for some reduction in
visual quality; here we consider such a decoder and we denote it by
“NR” for “no refinement.” We also consider a decoder, denoted by
“R,” that decodes these passes. Eis decoder employs the modified
kernels KCUPS1-SPP and KCUPS2-MRP; the KCUPS1-SPP
kernel decodes the SPP byte-stream together with decoding the
MEL and VLC byte-streams, which is possible because the
significance information needed for decoding the SPP becomes
available as the MEL and VLC byte-streams are decoded. Ee
decoded SPP is stored in global memory (2 bits/sample). Eis
kernel uses 77 registers and 144 bytes of shared memory per thread
as scratchpad memory. Ee KCUPS2-MRP kernel, which uses 82
registers, decodes the MagSgn and MRP byte-streams, and also
utilizes the decoded SPP information to reconstruct sample values.
 For wavelet synthesis WSYN, the approach proposed in [14] is
used. Our implementation uses 32-bit floats, which should be
sufficient for images with more than 16-bit sample values. Ee last
step of synthesis employs a “special” kernel that performs the color
transform step immediately after the wavelet synthesis step, writing
back a 16-bit reconstructed image in interleaved format suitable for
storage; this saves memory transactions. Codeblocks that contain
zero coding passes (i.e., all their sample values are zero) are

handled on the fly during the wavelet synthesis step; the synthesis
kernel retrieves decoded samples only for codeblocks that have one
or more passes, filling zeros for other codeblocks. To do this, the
synthesis kernel receives a list for codeblocks that have zero passes.
Eis save memory bandwidth. Ee special wavelet synthesis kernel
uses 125 registers; although this can limit occupancy, the kernel still
achieves very high memory bandwidth utilization because of the
high instruction-level parallelism in processing three colors.
 It is possible, although not explored here, to run the decoder in
a low-delay mode, whereby decoding a frame is performed in
batches; each batch decodes a preset number of rows, such as 10%
of the height of a frame.

4. EXPERIMENTAL RESULTS
Experimental results are obtained using 3 different NVidia GPUs:
a low-end GT 1030 with GDDR5, a mid-range GTX 1060, and an
enthusiast GTX 1080 card. Table 1 lists the specifications of these
cards. All code is written in CUDA with C++.
 Reconstructed frames can either be displayed or downloaded to
the host system for storage. If download is desired, the PCI-Express
(PCIe) interface between GPU and the host system can limit the
number of frames that can be downloaded per second; Table 2 lists
download speeds in fps for three PCIe generations. Experimental
results confirm that these frame rates are indeed achievable.
Display-only applications are not affected by this limit. All tested
cards support PCIe 3.0; they also have 2 DMA controllers that
enable them to upload and download data concurrently, utilizing the
bi-directional bandwidth of the PCIe interface.
 Ee performance achieved and kernel times are tabulated in
Table 3 for the 4K 4:4:4 12bit test sequence ARRI AlexaDrums
when 64x64 codeblocks, irreversible CDF97 wavelet, and 5 levels
of decomposition are used. No overlap in frame decoding is
employed, but compressed image upload is run in parallel with
decoding. Frame decode rates are obtained decoding 1000 HTJ2K
frames. For decoding losslessly compressed images, it is rather
pointless to present results for the refinement decoder (R), because
these images do not have SPP nor MRP. Ee table also lists results
for JPEG-XS [5] and JPEG2000 [7] on GPU. For the sequence
tested here, the rate-distortion performance (BD-rate, BD-PSNR)
of HTJ2K compared to regular JPEG2000, both using their optimal
setting, is (9.6%,−0.7dB) [2]. For CPU performance, the HTJ2K
decode rate, achieved on the 4-core i7-6700 CPU with a base clock
of 3.4GHz, can be as high as 148 fps or more, albeit with different
test conditions; more results can be found in [2]. Eus, a GPU can
be a relatively low-cost way to have higher decode rates than what
a 4-core CPU can deliver. It is worth noting that the computational
complexity of decoding a 4K video at 480 fps is similar to that of
decoding 8K at 120 fps; an 8K video however exposes more
parallelism, and can therefore better utilize a GPU.

5. CONCLUSIONS
We have presented an overview of the new HTJ2K. HTJ2K is built
upon and can utilize most of the JPEG2000 format features. HTJ2K
codestreams can also be transcoded to and from regular JPEG2000
codestreams. Encoding and decoding of HTJ2K codestreams is
many folds faster than regular JPEG2000 on CPUs. For GPUs, we
have shown, based on the preliminary results presented here, that
decoding HTJ2K is also many folds faster than regular JPEG2000,
and we believe the same is true for encoding. A low-end GPU is
sufficient for 4K HDR video playback at more than 60fps, while a
high-end GPU can play an 8K HDR video at 120fps.

Table 1. Ee GPU cards used in this work

Card
CUDA
Cores

Boost
Clock
(MHz)

Mem.
BW

(GB/s)

Attainable
Mem. BW

(GB/s)

PCIe
3.0

Lanes

DMA
Cntrlrs

GT1030 384 1468 48 ~40 x4 2
GTX1060 1280 1785 192 ~160 x16 2
GTX1080 2560 1847 320 ~240 x16 2

Table 2. PCI-Express achievable download speed expressed in
frames per second; the PCIe protocol has around 25% overhead,
whereby x16 PCI 3.0 can only achieve around 12GB/s of transfer
bandwidth. Images with 12 bits/sample use 2 bytes/sample.

 Previous Gen. Current Gen. Eis Year’s Gen.
Resolution x16 PCIe 2.0 x16 PCIe 3.0 x16 PCIe 4.0

4K 4:2:2 8b 361.7 fps 723.4 fps 1446.8 fps
4K 4:4:4 8b 241.1 fps 482.3 fps 964.5 fps
4K 4:2:2 12b 180.8 fps 361.7 fps 723.4 fps
4K 4:4:4 12b 120.6 fps 241.1 fps 482.3 fps
8K 4:4:4 12b 30.1 fps 60.3 fps 120.6 fps

Table 3. Decoding performance of the HTJ2K decoder for the 4K
4:4:4 12bit video test sequence ARRI AlexaDrums. “1b” is for 1
bit/pixel, “4b” is for 4 bits/pixel, and “ls” is for lossless.
†unknown codeblock size & bitrate. *estimated from result in [5].

 GT1030 GTX1060 GTX1080
Kernel 1b 4b ls 1b 4b ls 1b 4b ls

 Time to decode one frame (ms) w/o refinement (NR)
KCUPS1 .560 1.77 4.43 .408 .485 1.48 .385 .420 .520
KCUPS2 .727 2.00 4.88 .212 .538 1.36 .128 .310 .729
 Time to decode one frame (ms) with refinement (R)
KCUPS1-SPP 1.12 2.81 - .856 1.00 - .807 .895 -
KCUPS2-MRP 1.04 2.82 - .300 .806 - .172 .430 -
 Wavelet Synthesis and Color Transform (ms/frame)
WSYN+Color 3.96 4.57 6.15 1.11 1.29 1.66 .750 .886 1.19
 Frames per second
Proposed-NR 180 118 62 550 420 220 770 588 402
Proposed-R 160 96 - 425 317 - 560 440 -
JPEG-XS [5] NA NA 233* 194* NA
JPEG2000 [7] NA 95† NA

6. REFERENCE
[1] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image

Compression Fundamentals, Standards and Practice.
Norwell, MA, USA: Kluwer Academic Publishers, 2001.

[2] D. S. Taubman, A. T. Naman, and R. Mathew, “High
Eroughput Block Coding in the HTJ2K Compression
Standard,” in International Conference on Image Processing
(ICIP), Taiwan, 2019.

[3] ISO/IEC, “15444-9:2005 Information technology -- JPEG
2000 image coding system: Interactivity tools, APIs and
protocols.” 2005.

[4] ISO/IEC, “21122-1 Information technology -- Low-latency
lightweight image coding system -- Part 1: Core coding
system.” 2019.

[5] V. Bruns, T. Richter, B. Ahmed, J. Keinert, and S. Föel,
“Decoding JPEG XS on a GPU,” in 2018 Picture Coding
Symposium (PCS), 2018, pp. 111–115.

[6] N. Fürst, A. Weiß, M. Heide, S. Papandreou, and A. Balevic,
“CUJ2K: A JPEG2000 Encoder on CUDA,” 2009. [Online].
Available: http://cuj2k.sourceforge.net/. [Accessed: 27-Jan-
2019].

[7] Comprimato, “UltraJ2KTM - JPEG2000 SDK.” [Online].
Available: https://comprimato.com/products/comprimato-
jpeg2000/. [Accessed: 27-Jan-2019].

[8] Fastvideo LLC, “JPEG2000 codec on GPU,” Fast Video GPU
Image Processing. [Online]. Available:
https://www.fastcompression.com/products/jpeg2000/gpu-
jpeg2000.htm. [Accessed: 27-Jan-2019].

[9] P. Enfedaque, F. Aulí-Llinàs, and J. C. Moure, “GPU
Implementation of Bitplane Coding with Parallel Coefficient
Processing for High Performance Image Compression,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 8, pp. 2272–2284,
Aug. 2017.

[10] F. Wei, Q. Cui, and Y. Li, “Fine-Granular Parallel EBCOT and
Optimization with CUDA for Digital Cinema Image
Compression,” in 2012 IEEE International Conference on
Multimedia and Expo, 2012, pp. 1051–1054.

[11] M. J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: a low
complexity, context-based, lossless image compression
algorithm,” in Proceedings of Data Compression Conference
- DCC ’96, 1996, pp. 140–149.

[12] ISO/IEC, “15444-15 Information technology -- JPEG 2000
image coding system -- Part 15: High-Eroughput JPEG
2000.” 2019.

[13] ISO/IEC, “15444-1:2016 Information technology -- JPEG
2000 image coding system: Core coding system.” 2016.

[14] P. Enfedaque, F. Aulí-Llinàs, and J. C. Moure,
“Implementation of the DWT in a GPU through a Register-
based Strategy,” IEEE Trans. Parallel Distrib. Syst., vol. 26,
no. 12, pp. 3394–3406, Dec. 2015.

